•  
  •  
 

Article Type

Original Study

Abstract

Objective This study aimed to detect the prevalence of class 1 integrons among clinical as well as commensal Escherichia coli isolates. To investigate the distribution of class 1 integrons among E. coli isolates from different types of infection and E. coli isolates with different antibiotic susceptibility patterns, and to evaluate the contribution of class 1 integrons toward the dissemination of multidrug resistance (MDR) E. coli, particularly extended-spectrum b-lactamase (ESbL)-producing strains. Background Class 1 integrons play a role in the emergence of multiresistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance. Many of the most recently ESbL genes are frequently found within integron-like structures. Materials and methods The study was carried out by collecting specimens from 210 patients with nosocomial infection aimed to obtain 80 E. coli clinical isolates (CIs) from Menoufia University Hospitals and 20 E. coli commensals. MDR E. coli including ESbL producers were detected among the studied E. coli using standardized methods. Class 1 integrons (IntI1 gene) and ESbL (SHV, TEM, and CTX-M genes) were detected by PCR. Results Urine, being the most frequent specimen, had E. coli CIs (56.25%), followed by sputum specimens (20%). About 64% of E. coli CIs and 30% of E. coli commensals had class 1 integron. All E. coli CIs and 70% of the E. coli commensals were MDR strains. Using the phenotypic confirmatory combined disk test, 31.1% of E. coli CIs and 5% of E. coli commensals were ESbL producers. In the PCR results, total SHV genes were 70.4% of E. coli CIs and 100% of E. coli commensals. Total TEM were 37% of E. coli CIs and total CTX-M were 29.6% of E. coli CIs. About 41% of the intI1 gene-positive E. coli CIs and 16.7% of the intI1 gene-positive E. coli commensals were ESbL producers. Conclusion The study highlights the prevalence of class 1 integrons in MDR E. coli CIs in our hospitals and E. coli commensal isolates. Fair agreement was found between the presence of class 1 integrons and ESbL production in E. coli CIs. A restrictive antibiotic subscription policy is needed to avoid increased selection pressure where integrons play a potentially significant role in the uptake and dissemination of resistance genes.

Share

COinS