•  
  •  
 

Subject Area

Internal Medicine

Article Type

Original Study

Abstract

Objective We aimed to study the differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes using azacytidine. Background Ischemic injury of cardiomyocytes results in heart failure, as cardiomyocytes do not have the ability to regenerate after death. This has prompted interest in identifying cells capable of replacing the injured myocardium with healthy cells. The ideal candidate for cellular cardiomyoplasty is a less committed cell that can undergo full cardiogenic differentiation which can be found in the adult bone marrow (BM). Now it is believed that the adherent population of cells isolated from BM and expanded in vitro are a potential source of undifferentiated MSCs. Patients and methods The study included 30 cases referred to Clinical Pathology Department. Extra BM sample was collected from patients who already had a benign indications for BM examination as hypersplenism and immune thrombocytopenic purpura. MSCs were cultured from BM aspirate and mononuclear cells were separated using ficoll-hypaque solution. Thereafter, MSCs were separated from mononuclear cells fraction using plastic adherence flasks, and MSCs were subcultured in differentiating media containing azacytidine. Differentiation into cardiomyocytes was detected by morphology of cardiomyocytes and immunophenotyping. Results Vimentin expression on cardiomyocytes treated with azacytidine (82.46 ± 9.04) was significantly higher than on MSCs not treated with azacytidine (15.18 ± 4.11). Statistically significant difference was found between MSCs and cardiomyocytes for presence of vimentin (P < 0.001). Conclusion By using azacytidine, MSCs can be differentiated to cardiomyocytes.

Share

COinS